79 research outputs found

    A role for the developing lexicon in phonetic category acquisition

    Get PDF
    Infants segment words from fluent speech during the same period when they are learning phonetic categories, yet accounts of phonetic category acquisition typically ignore information about the words in which sounds appear. We use a Bayesian model to illustrate how feedback from segmented words might constrain phonetic category learning by providing information about which sounds occur together in words. Simulations demonstrate that word-level information can successfully disambiguate overlapping English vowel categories. Learning patterns in the model are shown to parallel human behavior from artificial language learning tasks. These findings point to a central role for the developing lexicon in phonetic category acquisition and provide a framework for incorporating top-down constraints into models of category learning

    Do Infants Really Learn Phonetic Categories?

    Get PDF
    Early changes in infants’ ability to perceive native and nonnative speech sound contrasts are typically attributed to their developing knowledge of phonetic categories. We critically examine this hypothesis and argue that there is little direct evidence of category knowledge in infancy. We then propose an alternative account in which infants’ perception changes because they are learning a perceptual space that is appropriate to represent speech, without yet carving up that space into phonetic categories. If correct, this new account has substantial implications for understanding early language development

    A phonetic model of non-native spoken word processing

    Get PDF
    Non-native speakers show difficulties with spoken word processing. Many studies attribute these difficulties to imprecise phonological encoding of words in the lexical memory. We test an alternative hypothesis: that some of these difficulties can arise from the non-native speakers' phonetic perception. We train a computational model of phonetic learning, which has no access to phonology, on either one or two languages. We first show that the model exhibits predictable behaviors on phone-level and word-level discrimination tasks. We then test the model on a spoken word processing task, showing that phonology may not be necessary to explain some of the word processing effects observed in non-native speakers. We run an additional analysis of the model's lexical representation space, showing that the two training languages are not fully separated in that space, similarly to the languages of a bilingual human speaker.Comment: Accepted for publication in Proceedings of EACL-2021. 11 pages, 5 figures, 2 table

    Evaluating computational models of infant phonetic learning across languages

    Get PDF
    In the first year of life, infants' speech perception becomes attuned to the sounds of their native language. Many accounts of this early phonetic learning exist, but computational models predicting the attunement patterns observed in infants from the speech input they hear have been lacking. A recent study presented the first such model, drawing on algorithms proposed for unsupervised learning from naturalistic speech, and tested it on a single phone contrast. Here we study five such algorithms, selected for their potential cognitive relevance. We simulate phonetic learning with each algorithm and perform tests on three phone contrasts from different languages, comparing the results to infants' discrimination patterns. The five models display varying degrees of agreement with empirical observations, showing that our approach can help decide between candidate mechanisms for early phonetic learning, and providing insight into which aspects of the models are critical for capturing infants' perceptual development.Comment: 7 pages, 1 figur
    • …
    corecore